Joule–Thomson Effects on the Flow of Liquid Water
نویسندگان
چکیده
Wepresent a revised formof the energy balance for the coupled thermodynamics of liquid water flowing in porousmedia and give examples of situations where a commonly used formulation based on transport of enthalpy leads to erroneous results. Assuming negligible contribution from kinetic energy as well as sources and sinks such as energy from radioactive decay, total energy conservation is reduced to a balance between changes in internal energy, enthalpy, conductive heat flux, and gravitational potential energy. The Joule–Thomson coefficient is defined as the change in temperature with respect to an increase in pressure at constant enthalpy. Because liquid water has a negative Joule–Thomson coefficient at low temperatures, at a constant gravitational potential water cools as it compresses and heats as it expands. If one ignores the gravitational energy, transport of enthalpy alone leads to water heating by 2◦C per kilometer as it is brought up from depth. The corrected energy balance transports methalpy, which is enthalpy plus gravitational potential energy. Although the simpler form leads to small changes in the temperature profile for typical simulations, there are several instances where this effect may prove to be important. The most important impact of the erroneous form is probably in the field of geothermal energy production, where the creation of a few degrees of heat in a simulation could lead to miscalculation of power plant efficiencies.
منابع مشابه
Predictions of the Joule-Thomson Inversion Curve for Water and Methanol from the LJ-SAFT EOS
In this work, we have calculated the Joule-Thomson inversion curve of two important associating fluids, namely water and methanol, from the SAFT equation of state. Comparisons with the available experimental data, for water and methanol indicate that this molecular based equation of state gives good prediction of the low temperature branch; but, unfortunately, due to lack of isenthalpic dat...
متن کاملHow to Design a Cryogenic Joule-Thomson Cooling System: Case Study of Small Hydrogen Liquefier
Heat exchangers are the critical components of refrigeration and liquefaction processes. Selection of appropriate operational conditions for cryogenic recuperative heat exchanger and expansion valve operating in Joule-Thomson cooling system results in improving the performance and efficiency. In the current study, a straightforward procedure is introduced to design an efficient Joule-Thomson co...
متن کاملA Correlation for the Prediction of the Adiabatic Joule-Thomson Coefficient of Pure Gases and Gas Mixtures
A correlation based on the general form of cubic equations of state has been derived. This equation provides a convenient mathematical form of the Joule-Thomson coefficient in terms of the state variable V and T. The Joule-Thomson coefficient calculated by this correlation has been compared with experimental data. It has been shown that the Redilich-Kwang equation of state is a suitable equ...
متن کاملDeveloping a Novel Temperature Model in Gas Lifted Wells to Enhance the Gas Lift Design
In the continuous gas lift operation, compressed gas is injected into the lower section of tubing through annulus. The produced liquid flow rate is a function of gas injection rate and injection depth. All the equations to determine depth of injection assumes constant density for gas based on an average temperature of surface and bottomhole that decreases the accuracy of gas lift design. Also g...
متن کاملInfluence of unsuitable operational conditions on the transient performance of a small hydrogen liquefier
Joule-Thomson cooling systems are used in refrigeration processes such as cryogenic gas liquefaction. Although extensive studies have been carried out by researchers, most of them include cryogenic heat exchangers and their associated fields. In the current study, an attempt was made to indicate the effect of using inappropriate operational conditions in a cryogenic Joule-Thomson cooling system...
متن کامل